Latent Semantic Analysis for Text Segmentation

نویسندگان

  • Freddy Y. Y. Choi
  • Peter M. Wiemer-Hastings
  • Johanna D. Moore
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Probabilistic Latent Semantic Analysis with Principal Component Analysis

Probabilistic Latent Semantic Analysis (PLSA) models have been shown to provide a better model for capturing polysemy and synonymy than Latent Semantic Analysis (LSA). However, the parameters of a PLSA model are trained using the Expectation Maximization (EM) algorithm, and as a result, the trained model is dependent on the initialization values so that performance can be highly variable. In th...

متن کامل

Semantic Text Segmentation and Sub-topic Extraction

Semantic Text segmentation and sub-topic extraction divides the input text into coherent paragraphs and extracts topics out of them. This enables applications to extract relevant meaningful data that could be useful in many text analysis tasks like information retrieval and summarization. In this project we have combined the techniques of text tiling and latent semantic analysis and have come u...

متن کامل

Probabilistic Latent Semantic Analysis for Broadcast News Story Segmentation

This paper proposes to perform probabilistic latent semantic analysis (PLSA) for broadcast news (BN) story segmentation. PLSA exploits a deeper underlying relation among terms beyond their occurrences thus conceptual matching can be employed to replace literal term matching. Different from text segmentation, lexical based BN story segmentation has to be carried out over LVCSR transcripts, where...

متن کامل

Squibs and Discussions: Improving Text Segmentation Using Latent Semantic Analysis: A Reanalysis of Choi, Wiemer-Hastings, and Moore (2001)

Choi, Wiemer-Hastings, and Moore (2001) proposed to use Latent Semantic Analysis (LSA) to extract semantic knowledge from corpora in order to improve the accuracy of a text segmentation algorithm. By comparing the accuracy of the very same algorithm, depending on whether or not it takes into account complementary semantic knowledge, they were able to show the benefit derived from such knowledge...

متن کامل

Improving Text Segmentation Using Latent Semantic Analysis: A Reanalysis of Choi, Wiemer-Hastings, and Moore

Choi, Wiemer-Hastings, and Moore (2001) proposed to use Latent Semantic Analysis (LSA) to extract semantic knowledge from corpora in order to improve the accuracy of a text segmentation algorithm. By comparing the accuracy of the very same algorithm, depending on whether or not it takes into account complementary semantic knowledge, they were able to show the benefit derived from such knowledge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001